![]() ![]() |
/* ATTENTION ! Dans cette page, vous trouverez des arbres obtenus avec des méthodes différentes, et de niveaux de difficulté différents. On distinguera : - des exemples nécessitant l'extension drawtree ; - des exemples ne nécessitant aucun extension ; - des exemples nécessitant l'extension gm_probabilytree. */ import drawtree; treeLevelStep = 1cm; treeNodeStep = 0cm; TreeNode RACINE = makeNode( "France" ); TreeNode DF1 = makeNode( RACINE, "France" ); TreeNode DF2 = makeNode( RACINE, "Br\'esil" ); TreeNode QF1 = makeNode( DF1, "France" ); TreeNode QF2 = makeNode( DF1, "Croatie" ); TreeNode QF3 = makeNode( DF2, "Br\'esil" ); TreeNode QF4 = makeNode( DF2, "Pays-Bas" ); draw(RACINE,(0,0)); shipout(bbox(5mm,white)); |
![]() ![]() |
import drawtree; treeLevelStep = 2cm; treeNodeStep = 0cm; treeMinNodeWidth = 1.8cm; //-- Ajout d'un type de boite perso --- TreeNode NodeGM( TreeNode parent = null, Label label, pen coul1=1bp+gray, pen coul2=paleblue ) { frame f; roundbox( f, label, xmargin=2mm, filltype=FillDraw(fillpen=coul2,drawpen=coul1) ); return makeNode( parent, f ); } //------------------------------------- TreeNode RACINE = NodeGM( scale(2)*"France" ), DF1 = NodeGM( RACINE, "France", coul2=palegreen ), DF2 = NodeGM( RACINE, "Br\'esil", coul2=palered ), QF1 = NodeGM( DF1, "France", coul2=palegreen ), QF2 = NodeGM( DF1, "Croatie", coul1=1bp+red, coul2=palered ), QF3 = NodeGM( DF2, "Br\'esil", coul2=palegreen ), QF4 = NodeGM( DF2, "Pays-Bas", coul1=1bp+red, coul2=palered ); draw(RACINE,(0,0)); shipout(bbox(2mm,white)); |
![]() ![]() |
unitsize(1cm); pen p=invisible; real marge=0.2, EspH=2, EspV=2; object objet_1=draw("$R_n$",box,(EspH,EspV),marge,p), objet_2=draw("$\overline{R_n}$",box,(EspH,-EspV),marge,p), objet_11=draw("$R_{n+1}$",box,(2*EspH,EspV*5/3),marge,p), objet_12=draw("$\overline{R_{n+1}}$",box,(2*EspH,EspV*1/3),marge,p), objet_21=draw("$R_{n+1}$",box,(2*EspH,-EspV*1/3),marge,p), objet_22=draw("$\overline{R_{n+1}}$",box,(2*EspH,-EspV*5/3),marge,p); add(new void(picture pic, transform t) { draw(pic,Label("$p_n$",UnFill(1)),(0,0)--point(objet_1,W,t),Center); draw(pic,Label("$q_n$",UnFill(1)),(0,0)--point(objet_2,W,t),Center); draw(pic,Label("$\frac{1}{20}$",UnFill(1)),point(objet_1,E,t)--point(objet_11,W,t),Center); draw(pic,Label("$\frac{19}{20}$",UnFill(1)),point(objet_1,E,t)--point(objet_12,W,t),Center); draw(pic,Label("$\frac{1}{5}$",UnFill(1)),point(objet_2,E,t)--point(objet_21,W,t),Center); draw(pic,Label("$\frac{4}{5}$",UnFill(1)),point(objet_2,E,t)--point(objet_22,W,t),Center); }); // Voir le même arbre dans les exemples suivants // obtenu avec l'extension(ette) gm_probabilytree : // la syntaxe s'en trouve simplifiée. |
![]() ![]() |
unitsize(1cm); pen p=invisible; real marge=0.2, EspH=2, EspV=2; object objet_1=draw("$R_n$",box,(EspH,EspV),marge,p), objet_2=draw("$\overline{R_n}$",box,(EspH,-EspV),marge,p), objet_11=draw("$A$",box,(2*EspH,EspV*3/2),marge,p), objet_12=draw("$\overline{A}$",box,(2*EspH,EspV*1/2),marge,p), objet_21=draw("$A$",box,(2*EspH,-EspV*1/2),marge,p), objet_22=draw("$\overline{A}$",box,(2*EspH,-EspV*3/2),marge,p), objet_111=draw("$B$",box,(3*EspH,EspV*11/6),marge,p), objet_112=draw("$\overline{B}$",box,(3*EspH,EspV*7/6),marge,p), objet_121=draw("$B$",box,(3*EspH,EspV*5/6),marge,p), objet_122=draw("$\overline{B}$",box,(3*EspH,EspV*1/6),marge,p), objet_211=draw("$B$",box,(3*EspH,-EspV*1/6),marge,p), objet_212=draw("$\overline{B}$",box,(3*EspH,-EspV*5/6),marge,p), objet_221=draw("$B$",box,(3*EspH,-EspV*7/6),marge,p), objet_222=draw("$\overline{B}$",box,(3*EspH,-EspV*11/6),marge,p); add(new void(picture pic, transform t) { draw(pic,Label("$p_n$",UnFill(1)),(0,0)--point(objet_1,W,t),Center); draw(pic,Label("$q_n$",UnFill(1)),(0,0)--point(objet_2,W,t),Center); draw(pic,Label("$\frac{1}{20}$",UnFill(1)),point(objet_1,E,t)--point(objet_11,W,t),Center); draw(pic,Label("$\frac{19}{20}$",UnFill(1)),point(objet_1,E,t)--point(objet_12,W,t),Center); draw(pic,Label("$\frac{1}{5}$",UnFill(1)),point(objet_2,E,t)--point(objet_21,W,t),Center); draw(pic,Label("$\frac{4}{5}$",UnFill(1)),point(objet_2,E,t)--point(objet_22,W,t),Center); draw(pic,Label("$\frac{1}{20}$",UnFill(1)),point(objet_11,E,t)--point(objet_111,W,t),Center); draw(pic,Label("$\frac{19}{20}$",UnFill(1)),point(objet_11,E,t)--point(objet_112,W,t),Center); draw(pic,Label("$\frac{1}{5}$",UnFill(1)),point(objet_12,E,t)--point(objet_121,W,t),Center); draw(pic,Label("$\frac{4}{5}$",UnFill(1)),point(objet_12,E,t)--point(objet_122,W,t),Center); draw(pic,Label("$\frac{1}{20}$",UnFill(1)),point(objet_21,E,t)--point(objet_211,W,t),Center); draw(pic,Label("$\frac{19}{20}$",UnFill(1)),point(objet_21,E,t)--point(objet_212,W,t),Center); draw(pic,Label("$\frac{1}{5}$",UnFill(1)),point(objet_22,E,t)--point(objet_221,W,t),Center); draw(pic,Label("$\frac{4}{5}$",UnFill(1)),point(objet_22,E,t)--point(objet_222,W,t),Center); }); |
![]() ![]() |
// gm_probabilitytree.asy // Extension destinée à dessiner un arbre de probabilités // C'est une première version, non documentée, en phase de test, // téléchargeable ici : gm_probabilitytree.asy import gm_probabilitytree; // Cette extension perso définit (entre autres choses à venir) : // 1. la structure 'Noeud' // 2. la fonction addN pour créer les noeuds de l'arbre pondéré // suivant la syntaxe : // Noeud addN( Noeud parent = null, // Label evenement = "", // pen[] evpen={currentpen,invisible}, // Label probabilite = "", // pen prpen=currentpen) // 3. la commande TracerArbre qui fait ce que son nom dit. // Paramètres par défaut de l'arbre : /* DistVertEntreNoeuds = .5cm; DistHoriEntreNiveaux = 2cm; HauteurNoeudMinimale = 1cm; StyleEvenParDefaut = 1bp+black; StyleBackGrParDefaut = invisible; StyleProbParDefaut = black; */ // Définition de styles particuliers pour les événements // suivant la syntaxe : // pen[] p={couleur du texte} // ou pen[] p={couleur du texte,couleur arrière plan} pen[] p1={red,paleblue}; pen[] p2={red}; DistVertEntreNoeuds = 1cm; DistHoriEntreNiveaux = 3.5cm; HauteurNoeudMinimale = .5cm; StyleEvenParDefaut = 1bp+black; StyleBackGrParDefaut = invisible; StyleProbParDefaut = black; StyleBrParDefaut = black; // Définition de la structure de l'arbre Noeud RAC = addN( ), Na = addN( RAC, "A", p1, "$\frac{1}{4}$", red ), Nb = addN( RAC, "B", "$\frac{1}{8}$" ), Nc = addN( RAC, "C", "$\frac{5}{8}$", .7yellow ), Nd = addN( Na, "D", "$\frac{3}{4}$", green ), Ne = addN( Na, "E", "$\frac{1}{4}$", green, 1.5bp+pink ), Nf = addN( Nb, "F", p2, "$\frac{1}{7}$" ), Ng = addN( Nb, "G", "$\frac{2}{7}$" ), Nh = addN( Nb, "H", "?"), Ni = addN( Nc, "I" ); // Tracé de l'arbre TracerArbre(racine=RAC,pos=(0,0)); shipout(bbox(2mm,white)); |
![]() ![]() |
// gm_probabilitytree.asy // Extension destinée à dessiner un arbre de probabilités // C'est une première version, non documentée, en phase de test, // téléchargeable ici : gm_probabilitytree.asy import gm_probabilitytree; pen[] p1={yellow,gray}; pen[] p2={red, pink}; DistVertEntreNoeuds = .5cm; DistHoriEntreNiveaux = 3.5cm; HauteurNoeudMinimale = .5cm; StyleEvenParDefaut = 1bp+black; StyleBackGrParDefaut = invisible; StyleProbParDefaut = black; StyleBrParDefaut = blue; // Définition de la structure de l'arbre Noeud RAC = addN( ), NR = addN( RAC, "R", p1, "$\frac{1}{4}$" ), NB = addN( RAC, "B", p2, "$\frac{3}{4}$", red, 2bp+red ), Nra = addN( NR, "1", p1, "$\frac{1}{6}$" ), Nrb = addN( NR, "2", p1, "$\frac{1}{2}$" ), Nrc = addN( NR, "3", p1, "$\frac{1}{3}$" ), Nba = addN( NB, "1", p2, "$\frac{1}{2}$", red, 2bp+red ), Nbb = addN( NB, "2", p1, "$\frac{1}{2}$" ); // Tracé de l'arbre TracerArbre(racine=RAC,pos=(0,0)); shipout(bbox(2mm,white)); |
![]() ![]() |
// gm_probabilitytree.asy // Extension destinée à dessiner un arbre de probabilités // C'est une première version, non documentée, en phase de test, // téléchargeable ici : gm_probabilitytree.asy import gm_probabilitytree; DistHoriEntreNiveaux = 3cm; Noeud RAC = addN( ), n1a = addN( RAC, "$R_n$", "$p_n$" ), n1b = addN( RAC, "$\overline{R_n}$", "$q_n$" ); // Quatre noeuds qui ne necéssitent pas d'être nommmés. addN( n1a, "$R_{n+1}$", "$\frac{1}{20}$" ); addN( n1a, "$\overline{R_{n+1}}$", "$\frac{19}{20}$" ); addN( n1b, "$R_{n+1}$", "$\frac{1}{5}$" ); addN( n1b, "$\overline{R_{n+1}}$", "$\frac{4}{5}$" ); TracerArbre(RAC); |
![]() ![]() |
// gm_probabilitytree.asy // Extension destinée à dessiner un arbre de probabilités // C'est une première version, non documentée, en phase de test, // téléchargeable ici : gm_probabilitytree.asy import gm_probabilitytree; pen[] p1={blue,paleblue}; DistVertEntreNoeuds = 1.5cm; DistHoriEntreNiveaux = 2.5cm; Noeud RAC = addN( ), n1a = addN( RAC, "$R_n$", p1, "$p_n$" ), n1b = addN( RAC, "$\overline{R_n}$", p1, "$q_n$" ), n2a = addN( n1a, "$R_{n+1}$", p1, "$\frac{1}{20}$" ), n2c = addN( n1b, "$R_{n+1}$", p1, "$\frac{1}{5}$" ); // Deux noeuds qui ne necéssitent pas d'être nommmés. addN( n1a, "$\overline{R_{n+1}}$", p1, "$\frac{19}{20}$" ); addN( n1b, "$\overline{R_{n+1}}$", p1, "$\frac{4}{5}$" ); TracerArbre(RAC); transform t=shift(1cm,0); label("$p(R_n\cap R_{n+1})=\dots$",t*n2a,align=E); label("$p(\overline{R_n}\cap R_{n+1})=\dots$",t*n2c,align=E); |
![]() ![]() |
// gm_probabilitytree.asy // Extension destinée à dessiner un arbre de probabilités // C'est une première version, non documentée, en phase de test, // téléchargeable ici : gm_probabilitytree.asy import gm_probabilitytree; DistVertEntreNoeuds = 1cm; DistHoriEntreNiveaux = 3cm; HauteurNoeudMinimale = .5cm; StyleEvenParDefaut = 1bp+black; StyleBackGrParDefaut = invisible; StyleProbParDefaut = blue; // Tracé de l'arbre relatif à un schéma de Bernouilli // par défaut : 2 répétitions, succès noté S. Bernouilli(); // Syntaxe : // void Bernouilli(Label Succes="$S$", Label probS="$p$", // Label Echec="$\overline{S}$", Label probE="$q$", // int repet=2, pair pos=(0,0)) shipout(bbox(2mm,white)); |
![]() ![]() |
// gm_probabilitytree.asy // Extension destinée à dessiner un arbre de probabilités // C'est une première version, non documentée, en phase de test, // téléchargeable ici : gm_probabilitytree.asy import gm_probabilitytree; DistVertEntreNoeuds = .2cm; // entre noeuds "terminaux" DistHoriEntreNiveaux = 1.75cm; HauteurNoeudMinimale = .2cm; StyleEvenParDefaut = 1bp+black; StyleBackGrParDefaut = invisible; StyleProbParDefaut = .8red; // Tracé de l'arbre relatif à un schéma de Bernouilli Bernouilli(Succes="$A$", probS="$\frac{2}{3}$", Echec="$\overline{A}$", probE="$\frac{1}{3}$", repet=4, pos=(0,0)); // Syntaxe : // void Bernouilli(Label Succes="$S$", Label probS="$p$", // Label Echec="$\overline{S}$", Label probE="$q$", // int repet=2, pair pos=(0,0)) shipout(bbox(2mm,white)); |
![]() ![]() |
// gm_probabilitytree.asy // Extension destinée à dessiner un arbre de probabilités // C'est une première version, non documentée, en phase de test, // téléchargeable ici : gm_probabilitytree.asy import gm_probabilitytree; DistVertEntreNoeuds = .2cm; // entre noeuds "terminaux" DistHoriEntreNiveaux = 1.75cm; HauteurNoeudMinimale = .2cm; StyleEvenParDefaut = 1bp+black; StyleBackGrParDefaut = invisible; StyleProbParDefaut = .8red; // Je joue tant que je ne gagne pas : GagnerAToutPrix(); // Syntaxe : // void GagnerAToutPrix( Label Succes="$G$", Label probS="$\frac{1}{2}$", // Label Echec="$P$", Label probE="$\frac{1}{2}$", // int repet=4, pair pos=(0,0) ) shipout(bbox(2mm,white)); |
Dernière modification le Fri Oct 28 13:01:22 CEST 2011 par G.Marris Valide XHTML